A Comparison of Parallel and Sequential
Niching Methods

Appears in Proceedings of the Sizth International
Conference on Genetic Algorithms, 136-143, 1995.

Samir W. Mahfoud
LBS Capital Management, Inc.
311 Park Place Blvd., Suite 330

Clearwater, FL 34619

E-mail: sam@Ilbs.com

A Comparison of Parallel and Sequential Niching Methods

Samir W. Mahfoud
LBS Capital Management, Inc.
311 Park Place Blvd., Suite 330

Clearwater, FL 34619

E-mail: sam@Ilbs.com

Abstract

Niching methods extend genetic algorithms
to domains that require the location of mul-
tiple solutions. This study examines and
compares four niching methods — sharing,
crowding, sequential niching, and parallel
hillclimbing. It focuses on the differences be-
tween parallel and sequential niching. The
niching methods undergo rigorous testing on
optimization and classification problems of
increasing difficulty. A niching-based tech-
nique is introduced that extends genetic al-
gorithms to classification problems.

1 INTRODUCTION

Niching methods (Mahfoud, 1995) promote the for-
mation and maintenance of stable subpopulations in
genetic algorithms (GAs), allowing GAs to extend
their problem-solving power to complex domains. This
study examines four niching methods and compares
their performances on problems in both classification
and multimodal function optimization. The problems
cover a wide range of difficulty levels. Classification
problems are solved via a new niching-based technique.

Parallel niching methods conceptually form and main-
tain niches simultaneously within a single population
— regardless of the number of processors employed.
Sequential niching methods, on the other hand, lo-
cate multiple niches temporally. This study compares
two parallel niching methods, crowding and sharing, to
both a sequential niching method and a parallel hill-
climber. It illustrates the strengths and the limitations
of all four niching methods.

2 SHARING

Sharing (Goldberg & Richardson, 1987) derates each
population element’s fitness by an amount related to
the number of similar individuals in the population.

Specifically, an element’s shared fitness, f', is equal to
its prior fitness f divided by its miche count. An in-
dividual’s niche count is the sum of sharing function
(sh) values between itself and each individual in the
population (including itself). The shared fitness of a
population element ¢ is given by the following equa-

tion: »

f(3)
> -1 sh(d(i. 7))
The sharing function is a function of the distance d
between two population elements; it returns a ‘1’ if
the elements are identical, a ‘0’ if they cross some
threshold of dissimilarity, and an intermediate value
for intermediate levels of dissimilarity. The threshold
of dissimilarity is specified by a constant, osp4re; if the
distance between two population elements is greater
than or equal to gsp4re, they do not affect each other’s
shared fitness. A common sharing function is

; (d) { 1— (d)a
sh = 9share ’
0,

where o« is a constant that regulates the shape of
the sharing function. Both genotypic and phenotypic
distance measures can be employed; the appropriate
choice depends upon the problem being solved.

fii) = (1)

if d < Oshare 5 (c))
otherwise ,

3 CROWDING

Crowding techniques (De Jong, 1975) insert new el-
ements into the population by replacing similar ele-
ments. We employ the deterministic crowding (DC)
variation because of its niching capabilities (Mahfoud,
1992, 1994). DC works as follows. First it groups all
population elements into n/2 pairs. Then it crosses all
pairs and mutates the offspring. Each offspring com-
petes against one of the parents that produced it. For
each pair of offspring, two sets of parent-child tourna-
ments are possible. DC holds the set of tournaments
that forces the most similar elements to compete. Like
in sharing, similarity can be measured using either
genotypic or phenotypic distances. Pseudocode for de-
terministic crowding is given on the following page.

Deterministic Crowding

(REPEAT for g generations)
DO n/2 times:

1. Select 2 parents, p; and p;, randomly, no replacement
2. Cross them, yielding ¢; and ¢,

3. Apply mutation / other operators, yielding ¢y and c}
4. IF [d(p1, 1) + d(p2, &2)] < [d(p1, ¢2) + d(pa. c1)]

e IF f(c}) > f(p1) replace p1 with ¢}
e IF f(ch) > f(p2) replace pa with ¢}

ELSE

e IF f(ch) > f(p1) replace p1 with ¢
IF f(c}) > f(p2) replace p» with ¢}

4 PARALLEL HILLCLIMBING

We define a parallel hillclimber that, starting with a
randomly generated initial population, forces each el-
ement to converge to its nearest attractor. Attractors
are defined using a neighborhood operator that is ap-
propriate to the problem being solved. The neighbor-
hood operator may be defined either over phenotypic
(variable) space or Hamming (bit) space. Pseudocode
for the phenotypic variation is given below.

Parallel Hillclimbing (Phenotypic)

1. Initialize Step Size
2. WHILE Step Size > €

(a) FOR each population element
e Randomly pick a starting variable
e Change = TRUE
e WHILE Change
— Change = FALSE
— FOR each variable
x [F adding Step Size to current variable
yields improved fitness
- Perform the addition
- Change = TRUE
x ELSE IF subtracting Step Size from cur-
rent variable yields improved fitness
- Perform the subtraction
- Change = TRUE
(b) Step Size = Step Size [2

The parallel hillclimbing algorithm is similar in op-
eration to binary search. When operating in pheno-
typic space, the hillclimber starts with a large step
size, and each population element hillclimbs until it
can no longer improve. The hillclimber then cuts its
step size in half, and each population element again
hillclimbs until it can no longer improve. The hill-
climber iterates until it has hillclimbed using a step
size of €, where € is the smallest possible increment

in a variable. The phenotypic neighborhood operator
simply consists of either an addition or a subtraction
of the step size from one of the problem’s variables.

The initial step size requires some care in setting. Too
small a size will delay the hillclimber’s convergence.
Too large a size, on the other hand, will cause points
to skip from local optimum to local optimum. While
such behavior may be satisfactory when the goal is
to locate the single best optimum, to locate multiple
optima it is preferable that each point remain within
the basin of attraction (of the optimum) in which it
currently resides. This latter strategy prevents repet-
itive location of the same few optima. For genotypic
hillclimbing, also called bitclimbing, we set both the
initial and final step sizes to one bit.

Both phenotypic and genotypic hillclimbers imple-
ment versions of next-ascent hillclimbing (Miihlenbein,
1991). Starting with a randomly chosen variable, they
cycle through the variables, trying perturbations on
each one. For the phenotypic hillclimber, a perturba-
tion is either an upward or a downward change in the
value of a variable. For the genotypic hillclimber, a
perturbation is the flipping of a bit-variable. The hill-
climbers take each improvement they find. They ter-
minate, for each step size, after they have completed a
full cycle through the variables without improvement.

The parallel hillclimber is an important base for com-
parison, because if a niching method is merely shuffling
points and then converging to the nearest attractor,
there is no point in pursuing that niching method —
parallel hillclimbing is superior. We instead seek nich-
ing methods that intelligently decide which maxima
to pursue, and that tend to prefer higher maxima over
lower maxima. Note that the hillclimbing method we
have chosen may not be the most efficient of all possi-
ble hillclimbers. However, it has predictable behavior:
it tends to climb to the nearest local optimum in whose
basin of attraction it currently lies, a desirable prop-
erty for a hillclimber that strives to locate multiple
optima. Also to its merit, our hillclimber is general-
purpose, requiring only the same problem information

as the GA.

5 SEQUENTIAL NICHING

The sequential niching (SN) method we consider is
that of Beasley, Bull, and Martin (1993). It works by
iterating a simple GA, and maintaining the best solu-
tion of each run off-line. The authors call the multiple
runs that sequential niching performs to solve a single
problem, a sequence. To avoid converging to the same
area of the search space multiple times, whenever SN
locates a solution, it depresses the fitness landscape
at all points within some radius of that solution. This
niche radius plays a role in SN similar to that of ogp4re
in sharing. In fact, the authors suggest that SN is a
sequentialization of fitness sharing.

Like the parallel hillclimber, sequential niching is an
important base to which parallel niching methods can
be compared. If a parallel niching method can offer no
advantage, there is no point in wasting time with it —
one would be better off locating solutions sequentially.
As we soon demonstrate, the advantages of parallel
niching methods go beyond aesthetics: parallel nich-
ing can accomplish many things that sequential nich-
ing can not. Beasley et al. mention three potential
advantages of sequential niching. The first is simplic-
ity: SN is conceptually a simple add-on to existing
optimization methods. The second is the ability to
work with smaller populations, since the goal during
each run of a sequence is to locate only one peak. The
third is speed, and is partially a byproduct of the sec-
ond. We find that the latter two potential advantages
never materialize. In fact, many disadvantages quickly
become apparent. These include the following:

e Loss, through deration, of optimal solutions and
their building blocks;

e Repeated search of depressed regions of the space;
e Repeated convergence to the same solutions;

e Loss of cooperative population properties, includ-
ing cooperative problem solving, and niche main-
tenance along the way to a single solution;

e Slower runtime, even on serial machines.

6 METHODOLOGY

We employ a single performance criterion that is com-
mon to all algorithms. We assume that all algorithms,
given a sufficiently large population, will be able to
solve all problems that we consider. This is not an
unrealistic assumption, since the probability of all de-
sired solutions appearing in the initial population ap-
proaches one as population size approaches infinity.
Our performance criterion is the total number of func-
tion evaluations for the minimum population size at
which an algorithm returns all desired solutions. (We
do not penalize or reward an algorithm for returning
extraneous solutions.) Over multiple trials, the fewer
the average number of function evaluations, the better
an algorithm is for solving a particular problem.

We start with the minimum population size that is
both a power of two and large enough to locate all
desired solutions (n = 2 for SN). We double n and re-
run an algorithm until either it locates and maintains
to termination all desired solutions, or it exceeds a
function-evaluations limit. The limit is 1.5 million GA
function evaluations or, alternatively, 2 million com-
bined function evaluations for the GA plus the hill-
climber. (This combination is explained shortly.) We
use only population sizes that are powers of two in or-
der to avoid massive numbers of trials and fine-grained
distinctions between nearly optimal population sizes.

For SN, like Beasley et al., we employ a constant pop-
ulation size across all runs in a sequence.

SN and sharing run under stochastic universal selec-
tion (SUS) (Baker, 1987). We employ SUS because it
is the least noisy of commonly used, unbiased, fitness-
proportionate selection methods. DC and parallel hill-
climbing have built-in selection mechanisms.

After each GA terminates, including GAs internal to
SN sequences, hillclimbing is invoked upon that GA’s
final population. The idea is to deal only with local
optima and not points in the neighborhoods of local
optima. GAs are, after all, global optimization meth-
ods, and are well complemented by local optimization
methods such as hillclimbers. We use the parallel hill-
climbing algorithm as our post-GA hillclimber. (There
is no need, of course, to call the parallel hillclimber
to optimize its own final population.) For sequential
niching (and for the other three algorithms as well),
hillelimbing occurs on the original, un-derated, fitness
landscape. This is one of Beasley et al.’s suggested
improvements to their algorithm.

We employ full crossover (with probability 1.0) and
no mutation in all three genetic algorithms. Without
mutation, we are better able to determine the merits
and drawbacks of the underlying GAs.

All four niching algorithms return all unique elements
in the final population (post-hillclimbing) as solutions.
For SN, when a single run of a sequence locates mul-
tiple solutions, these solutions are added to the final
list. SN then derates about each solution, as if mul-
tiple runs had been performed. The final population
for SN consists of the combination of final populations
(post-hillclimbing) of all runs in a sequence.

We run each algorithm 10 times on each test problem,
employing the same 10 random number seeds (and ini-
tial populations) for each algorithm. We terminate
each run (including runs internal to SN sequences) af-
ter it effectively stops improving. (Parallel hillclimbing
is an exception; it runs until no further improvement
occurs.) We determine the stopping point in a fashion
similar to Beasley et al., by employing a halting win-
dow of five generations. Call the current generation
that has just finished ¢;, and the prior four genera-
tions, t_q1, t_o, t_3, and t_4. If the average fitness of
the population at ¢y is not more than some increment
inc greater than the average fitness of the population
at t_4, the run halts. We use inc = .001 on all prob-
lems except M6, where we use inc = .1. Runs of an
SN sequence halt when the average derated fitness of
the population stagnates. Sharing and DC halt when
the average raw fitness stagnates.

The stopping criterion for the overall SN algorithm is
not easy to set, at least when the algorithm is success-
ful. We give SN ideal behavior by stopping successful
sequences immediately after they have located all de-

sired peaks. Unsuccessful sequences are stopped after
some run fails to yield a new solution, or after they
exceed the maximum number of function evaluations.

We utilize the sharing function of Equation 2 with
a = 2. Beasley et al. recommend « = 2 instead of the
usual @ = 1, in order to produce lower false optima in
the derated fitness landscape. Like Beasley et al., we
set the derating function for sequential niching to one
minus the equivalent sharing function.

7 TEST PROBLEMS

We consider 11 problems, ranging widely in difficulty.
M1-M9 are multimodal function optimization prob-
lems; MUX-6 and PAR-8 are classification problems.

The first four problems M1-M/ are one-dimensional,
five-peaked, sinusoidal functions. Similar functions
were first used by Goldberg and Richardson (1987).
Despite the simplicity of these functions, most po-
tential niching GAs have in the past had trouble lo-
cating and maintaining all five peaks. MI (shown
in Figure 1) consists of equally-spaced peaks of uni-
form height; M2, equally-spaced peaks of nonuniform
height; M3, unequally-spaced peaks of uniform height;
M}, unequally-spaced peaks of nonuniform height.
The variable x in M1-M/ is encoded using 30 bits.
The functions are specified by the following equations:

Mi(z) = sin®(57z)
M2(z) = e 2mDCFED’ Gind(57z)
M3(x) = sin®(5x[z"" —.05])
MY(z) = e 2T ginb (5a[207° — .05))
T
0.8
-~ os
s wal
0.2

Figure 1: Test Function M1 is displayed.

The fifth problem M5, shown in Figure 2, is the mod-
ified Himmelblau’s function from Deb’s (1989) study.
M5 is a two-dimensional function with four peaks of
identical height. The two variables, and y, are en-
coded using 15 bits apiece. M5 is defined below.

2186 — (22 +y — 112 — (z +y? - 7)?

Ms(z,y) = 2186

Figure 2: Test Function M5 is displayed.

M6, shown in Figure 3, is the Shekel’s Foxholes prob-
lem from De Jong’s (1975) dissertation. M6 is a two-
dimensional function with twenty-five peaks of dif-
fering heights. The two variables are encoded us-
ing 17 bits apiece. Let a(i) = 16[(¢ mod 5) — 2] and
b(i) = 16(|:/5] — 2). M6 is defined below.

M6(z,y) = 500— =

24 1
002+ X750 THF e T G=HO)e

Figure 3: Test Function M6 is displayed.

M7 is the massively multimodal, deceptive function
of Goldberg, Deb, and Horn (1992). Overall fitness is
the sum of the fitnesses of five subfunctions. Each sub-
function is a bimodal, deceptive function of unitation,
as displayed in Figure 4. The total number of optima
is 5,153,664, of which 32 are global. M$§ is the same
as M7, but exponentially scaled to create larger dif-
ferentials between the fitnesses of global and nonglobal
optima. The scaling function is
s =52y
5
where M7 in the equation represents the value for M7
over the entire 30-bit function.

M9 is a minimum-distance function (Horn & Gold-
berg, in press). Overall fitness is the sum of the fit-
nesses of three subfunctions of eight bits each. Each

0.8
z 0.6
=
=]
o
o 0.4
s
0.2
0 ‘ ‘ ‘
0 1 2 3 4 5 6

count (x)

Figure 4: Test Function M7 is displayed.

subfunction is a maximally deceptive, trimodal func-
tion. Global optima are arbitrarily chosen at points,
00000000, 10001100, and 01001010. The fitness of a
substring is its Hamming distance to the closest global,
except for global substrings, which receive a fitness of
10. M9 has 2197 local optima, of which 27 are global.

The remaining two problems are classification prob-
lems. Given a set of positive and negative training
examples, the objective is to find a concept descrip-
tion that includes all of the positive examples, but no
negative examples. We map this to a multimodal op-
timization problem by using the full population as a
disjunctive-normal-form concept description, and by
letting each population element represent a disjunct.
The niching GA must locate and maintain a set of
optimal disjuncts. We assign fitnesses to individual
disjuncts based on the number of positive examples
they cover (POS), and the number of negative exam-
ples they cover (NEG). Assuming NTX total negative
examples, our fitness function is

1+ POS if NEG=0 ;
f(POS,NEG) = { 1— % otherwise .

Individuals in the population are represented by a con-
catenation of two-bit values that represent boolean
variables. A ‘00’ value corresponds to a ‘0’ bit; ‘11’
to a ‘1’ bit; ‘01’ and ‘10°, to a wild card (a “don’t
care” symbol). A repair mechanism reduces the size
of the search space. The repair mechanism flips all ‘10’
alleles, upon fitness assignment, to ‘01’ alleles.

We examine two types of boolean classification prob-
lems that are extensively used in the machine-learning
literature parity problems and multiplexer prob-
lems. Parity problems form a class of boolean prob-
lems that are maximally hard in a sense: from an opti-
mization point of view, they contain the largest num-
bers of optima of any boolean concept. Multiplexer
problems represent average-case problems.

PAR-8 is an eight-bit, odd-parity problem: if an odd
number of variables are “on”, the example is positive;
otherwise, the example is negative. PAR-8 requires the
location and maintenance of 128 disjuncts. MUX-6is a

six-bit multiplexer problem. A multiplexer contains a
number of address bits and a number of data bits. The
address bits determine the data bit that is selected.

‘We employ the following niche radius for each problem.
This value serves as the niche radius for sequential
niching, ospere for sharing, and the initial step size for
parallel hillclimbing, both on its own and when tacked
on to the end of a GA. M1-M} use a phenotypic niche
radius of .1; M5, 4.24 (phenotypic); M6, 8.0 (pheno-
typic); M7 and M8, 5.5 (genotypic); M9, 2.5 (geno-
typic); MUX-6 and PAR-8, 3.5 (genotypic). These
values allow discrimination among desired peaks.

8 RESULTS

Tables 1-3 summarize all results and allow compari-
son of the four algorithms on problems of varying diffi-
culty. The tables compare the number of GA function
evaluations (without hillclimbing function evaluations
added) for the three GAs. They then compare the
total number of function evaluations (GAs plus hill-
climbers) for all four algorithms. The best average
results on each problem are shown in boldface.

We group test problems based on difficulty. The first of
three groups, shown in Table 1, consists of the easiest
problems, M1-M5 and MUX-6. Each of these prob-
lems has fewer than ten peaks and has negligible iso-
lation or misleadingness. The second group, shown in
Table 2, consists of two problems of intermediate dif-
ficulty, M6 and PAR-8. These problems have a mod-
erate number of peaks — M6 has 25 and PAR-§ has
128 — and have negligible isolation or misleadingness.
The third group of problems, shown in Table 3, con-
sists of the three hardest problems, M7-M9. Each of
these problems has thousands to millions of peaks, and
also displays both isolation and misleadingness.

In Tables 1-3, average subpopulation size is computed
by dividing average population size by the number of
desirable peaks. For sequential niching, average popu-
lation size is first computed across all sequences and all
runs within a sequence. This average population size is
then divided by the number of desirable peaks to yield
average subpopulation size. For SN, g indicates the
average, across all sequences, of the combined number
of generations for all runs within a sequence.

Table 1 shows that on the easiest problems, parallel
hillclimbing is the overall winner, with DC a close sec-
ond. Parallel hillclimbing is fastest on four of the six
easy test functions, and DC is fastest on the other two.
Second place goes twice to hillclimbing, twice to DC,
and twice to sharing. Third place goes four times to
sharing, once to DC, and once to SN. SN takes last
place all but one time: it edges out DC on MJ.

These results confirm prior results of GA researchers
who show that hillclimbing algorithms can outperform

Table 1: Performances of parallel hillclimbing (HC),
sequential niching (SN), fitness sharing (SH), and de-
terministic crowding (DC) are given on the six easi-
est test functions. Statistics are taken over ten runs.
Average subpopulation size is 7; average number of
generations is §. The mean number of function eval-
uations (p) is given for each GA alone, and for each
combination of GA and hillclimber. The best average
results on each problem are shown in boldface.

Method | 7 | g | GA:p | Combo: p
HC 2.72 1017
SN 3.68 | 46.40 738 4112
SH 5.76 8.00 264 2431
DC 2.40 | 28.00 380 1246
M2
HC 2.72 1021
SN 4.64 | 75.60 1770 8632
SH 8.96 8.70 442 3827
DC 2.40 27.40 372 1264
M3
HC 3.04 1150
SN 592 | 26.80 719 4375
SH 6.08 8.70 294 2579
DC 2.08 | 20.30 262 1013
17
HC 3.04 1140
SN 5.12 72.40 2445 10231
SH 6.72 9.20 352 2892
DC 2.08 17.00 210 975
M5
HC 2.50 901
SN 1.30 | 32.30 180 1456
SH 2.80 8.00 103 1111
DC 5.60 | 25.60 603 2459
MUX-6
HC 10.40 1257
SN 6.40 | 140.70 4423 9439
SH 13.60 8.90 534 1931
DC 12.00 | 44.30 2816 3654

GAs on easy test functions, such as the five functions of
De Jong’s (1975) test suite. (Note that DC, a crossover
hillclimber, is a close second and sometimes defeats the
parallel hillclimber.) There is hence no point in doing
performance comparisons involving GAs, exclusively
using easy problems. One should be more interested in
how performance scales up to harder problems. Doing
comparisons on a range of problems from very easy to
very hard tells a lot about the merits of an algorithm
and the scalability of its performance.

We give results without hillclimbing to show how long
it takes a GA to get close to the final desired solutions
(anywhere within their hillclimbing basins of attrac-
tion), without having to pinpoint them. When hill-
climbing function evaluations are not counted, shar-
ing and deterministic crowding share three victories
apiece, with sharing having the lowest overall number

of function evaluations. Second place goes to sharing
three times, DC twice, and SN once. Third and final
place goes to SN five times and DC once. (There is no
fourth place, since we do not compare the hillclimber
to the GAs in terms of GA function evaluations.)

It is somewhat surprising that SN performs poorly in
comparison with the other algorithms on the six easiest
test functions, especially since Beasley et al. employ
M1-M5 in their study, and since our SN results with-
out hillclimbing are in all cases faster than Beasley
et al.’s on M1-M5. Ignoring hillclimbing, SN requires
roughly 3 8 times as many evaluations as sharing, on
five of the six easy test functions, and roughly 1.7
times as many on the other. With hillclimbing, SN re-
quires roughly 4-9 times as many function evaluations
as parallel hillclimbing on five out of six functions, and
roughly 1.6 times as many on the other.

A plausible explanation for SN’s behavior is that once
SN has squashed several peaks in the fitness landscape,
locating the final peak is harder because that peak
is isolated. One observation about SN on MI1-M/ is
that once its population grows large enough to locate
one peak, it has grown large enough to locate multiple
peaks. Many runs on MI1-M/ locate no peaks with
n = 8, but 2-3 peaks at a time with n = 16.

All of the algorithms, including SN, find all desired op-
tima on all six test functions in under 11,000 function
evaluations. Therefore, all four algorithms are general-
purpose enough to handle the easiest problems. We al-
ready know that the GA, although a capable optimizer
of easy functions, may not be the optimal algorithm for
any particular easy test function. A good algorithm,
however, must scale up to solving harder problems.

Table 2 illustrates the performances of the four algo-
rithms on two functions of intermediate complexity,
M6 and PAR-8. Sharing is the clear winner on both
functions, with or without hillclimbing. Sharing per-
forms only 14% to 44% of the function evaluations of
its closest competitor. On M6, hillclimbing comes in
second and SN comes in third. DC fails to locate and
maintain the 25 optima, even given 1.5 million GA
function evaluations. However, it consistently locates
and maintains the global optimum. On PAR-8, DC
comes in second, taking roughly three times as many
function evaluations as sharing. Hillclimbing comes in
third, taking about four times as many as sharing. SN
comes in fourth, taking about five times as many as
sharing. Without hillclimbing, SN edges out DC for
second, using 80% of DC’s function evaluations.

The reason for DC’s peculiar performance on M6
is that the function is not multimodal in crossover-
hillclimbing space. In other words, DC uses the non-
global optima as stepping stones to the global opti-
mum: they are all on the crossover path to the global.
In terms of the crossover interactions defined in Mah-
foud’s (1994) study, the global optimum is dominating

Table 2: Performances are given on the two functions
of intermediate difficulty.

Method | 7 | g | GA:p | Combo: p
HC 12.29 29,017
SN 3.58 | 146.30 12,202 46,657
SH 5.12 11.80 1,638 12,910
DC > 1.5 x 10°
PAR-8

HC 48.08 202,387
SN 19.20 36.40 100,557 263,666
SH 9.60 12.60 17,203 54,402
DC 11.20 87.40 125,850 149,022

Table 3: Performances are given on the three func-
tions of greatest difficulty. Function evaluations are in
thousands (indicated by the letter K).

Method | 2 | 3 | GA:pu | Combo: p
M7

HC > 2000K

SN > 1500K

SH > 1500K

DC 20.80 | 119.80 81K 101K
M8

HC > 2000K

SN > 1500K

SH 19.20 19.20 13K 38K

DC 22.40 | 134.40 98K 119K
M9

HC > 2000K

SN > 1500K

SH > 2000K

DC 136.53 | 337.80 1253K 1342K

nearby locals that are in turn dominating other locals,
and so on, creating a cascading effect.

The method by which SN solves PAR-8 is of interest:
SN locates all 128 disjuncts in a single run. Its success
is therefore due to SUS’s stability and not to iterating
the GA. Again, once n is high enough to find all desired
solutions, it is high enough to find them in one run of
a parallel niching method. Unfortunately, this ability
of SUS to maintain multiple solutions of identical fit-
ness is not consistent from problem to problem, and
evaporates when the solutions have differing fitnesses.

On the three hardest problems (see Table 3), DC is the
only method to solve all three in the allotted number
of function evaluations. Sharing solves M§ in fewer
evaluations than DC, but reaches the limit on M7 and
M9. SN and parallel hillclimbing fail to find the re-
quired optima in 1.5 million GA function evaluations
and 2 million overall function evaluations, respectively.

Results for sharing on M7 and M8 are consistent with
those reported by Goldberg, Deb, and Horn (1992),
where sharing is unable to solve the unscaled, mas-
sively multimodal, deceptive problem, but is able to

solve the scaled version. The trouble is that sharing
without scaling is too generous in allocating individu-
als to the millions of extraneous peaks; sharing with
scaling minimizes the heights of those peaks. The au-
thors estimate that a population size of over 3.46 mil-
lion would be necessary to solve the unscaled version.
Population sizing formulas for sharing (Mahfoud, in
press) give a higher required population size of over 95
million. Sharing encounters problems with M9 for the
same reasons it has trouble with M7 — too many ex-
traneous peaks of too high a fitness. With n = 32, 768,
sharing converges after 19 generations, performing
655,360 GA function evaluations and 2,227,120 to-
tal function evaluations. It returns 2009 total optima,
of which 5 are global.

Parallel hillclimbing fails on all three problems for ob-
vious reasons: the problems have become too complex
for hillclimbing. The misleading attractors, which cor-
respond to extraneous peaks, draw most population
elements that are not exact instances of global optima.

On M7 and M8, SN has the choice of trying to squash
millions of extraneous peaks and then trying to con-
verge to 32 remaining needles (in a huge haystack), or
trying to locate the globals one at a time. Derating
millions of undesirable optima is not a very appealing
option. With sufficiently large populations, SN’s first
few runs locate several global optima. However, after
SN derates these and other local optima, the algorithm
has a harder time locating any more global optima.
This problem becomes progressively worse until the
algorithm fails. SN runs into similar problems on M.

Overall, on the 11 test problems, sharing shows the
greatest stability of the tested algorithms, typically ex-
hibiting lower standard deviation in the average num-
ber of function evaluations to convergence. Sharing
also typically runs the fewest generations. DC suc-
ceeds with the smallest subpopulations on the average.

9 DISCUSSION OF RESULTS

We can draw the following general conclusions about
algorithmic performance versus problem hardness:

e Parallel hillclimbing is best for the easiest prob-
lems. It may also work in a reasonable time-frame
on problems of intermediate complexity. How-
ever, it fails on problems of high complexity.

e Sequential niching is weak on easy problems, and
is unable to solve harder problems. In general,
parallel hillclimbing is a better method that is
also parallel. Parallel hillclimbing outperforms se-
quential niching because the parallel hillclimber
does not destroy the fitness landscape.

e Sharing generally works on problems of all levels
of complexity. However, it runs into trouble on
problems in which many extraneous peaks exist

that are similar in fitness to the desired peaks. It
may be able to overcome this difficulty through
the intelligent application of fitness scaling.

e Deterministic crowding is generally good for prob-
lems of all levels of complexity. However, it
may ultimately lose lower optima that lie on a
crossover path to higher optima. Deterministic
crowding, a crossover hillclimber, can solve prob-
lems that are much more difficult than those solv-
able by traditional, mutation-based hillclimbing.

‘We have found that parallel niching methods outper-
form sequential niching methods. Furthermore, SN
does not achieve a sequentialization of fitness sharing,
and it yields few of the benefits that its authors claim.
In general, parallel niching methods offer the following
advantages over sequential niching methods:

e Parallel niching methods can easily be imple-
mented on parallel machines. Sequential niching
methods, by their nature, can not.

e Parallel niching methods are faster than SN meth-
ods (on serial machines) and give better results.

e Parallel niching GAs can be applied to maintain
internal diversity when searching for a single so-
lution. SN can not.

e SN is likely to locate the same solutions repeat-
edly, despite its deration of peaks.

e SN creates false optima in the derated fitness
landscape that are in close proximity to peaks
that were previously located. SN can also offset
an optimum’s location as a consequence of dera-
tion. Beasley et al. suggest hillclimbing in the
original fitness landscape to overcome both prob-
lems. However, hillclimbing stands a good chance
of rediscovering a previously derated peak.

e For classification and simulation problems, paral-
lel niching allows the population to cooperatively
act as a solution. Sequential niching does not. For
instance, one might not be interested in global op-
tima at any point in time but in the state of the
population as a whole — the optimal population
rather than the optimal population element.

e SN’s deration of optima may delete other op-
tima of interest within the deration neighborhood.
Even worse, solutions that have been derated —
whether local optima, global optima, or near-
optima — might take with them important build-
ing blocks for locating other solutions. On hard
problems such as M7-M9, eliminating one global
optimum hinders the location of others.

e As SN derates optima, the remaining optima be-
come increasingly difficult to locate. Derated
regions, containing mostly plateaus and small
ridges, occupy a greater and greater portion of the
space — and SN must repeatedly search through

this derated portion of the space. After deration
of a few optima, the required population size for
SN can easily exceed that for a parallel niching
method capable of locating all niches within its
single population. Beasley et al.’s claim that SN
requires a population of only 1/c of the size of
a parallel niching method’s population does not
hold, except possibly for locating the first peak.

We have also found that parallel niching GAs outper-
form parallel hillclimbers, on all but the easiest prob-
lems. When many extraneous attractors are present
or extraneous attractors with large basins are present,
parallel hillclimbing will in probability converge to sev-
eral of these attractors. GAs with parallel niching, on
the other hand, have the power to escape these attrac-
tors and to converge to the desired solutions.

References

Baker, J. E. (1987). Reducing bias and inefficiency in the
selection algorithm. Proc. 2nd ICGA, 14-21.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). A sequen-
tial niche technique for multimodal function optimization.

Evolutionary Computation, 1(2), 101-125.

Deb, K. (1989). Genetic algorithms in multimodal function
optimization (Masters thesis / TCGA Rep. 89002). U. of
Alabama, The Clearinghouse for Genetic Algorithms.

De Jong, K. A. (1975). An analysis of the behavior of a
class of genetic adaptive systems (Doctoral dissertation, U.
of Michigan). Dissertation Abstracts International, 36(10),
5140B. (University Microfilms No. 76-9381)

Goldberg, D. E., Deb, K., & Horn, J. (1992). Massive
multimodality, deception, and genetic algorithms. In R.
Manner & B. Manderick (Eds.), Parallel problem solving
from nature, 2 (pp. 37-46). Elsevier.

Goldberg, D. E., & Richardson, J. (1987). Genetic algo-
rithms with sharing for multimodal function optimization.

Proc. 2nd ICGA, 41-49.

Horn, J., & Goldberg, D. E. (in press). Genetic algorithm
difficulty and the modality of fitness landscapes. In L. D.
Whitley (Ed.), Foundations of genetic algorithms [FOGA],

3. Morgan Kaufmann.

Mahfoud, S. W. (1992). Crowding and preselection re-
visited. In R. Méanner & B. Manderick (Eds.), Parallel
problem solving from nature, 2 (pp. 27-36). Elsevier.

Mahfoud, S. W. (1994). Crossover interactions among
niches. Proc. 1st IEEE Conf. Evolut. Comput., 188 193.

Mahfoud, S. W. (1995). Niching methods for genetic algo-
rithms (Doctoral dissertation / IIlIGAL Rep. 95001). Ur-
bana: U. of Illinois, Illinois Genetic Algorithms Lab.

Mahfoud, S. W. (in press). Population size and genetic
drift in fitness sharing. In L. D. Whitley (Ed.), FOGA, 3.

Morgan Kaufmann.

Miihlenbein, H. (1991). Evolution in time and space
The parallel genetic algorithm. In G. J. E. Rawlins (Ed.),
FOGA (pp. 316-337). Morgan Kaufmann.

